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The ratio of ω6 to 3 polyunsaturated fatty acid (PUFA) in western diet has remarkably increased over the 

past decades. This change in dietary fatty acid (FA) composition, independent of the total caloric intake and 

total fat intake, may contribute to the obesity epidemic in many populations. Experimental studies show 

that 3 and ω6 FAs play different role in adipogenesis, lipid homeostasis, brain-gut-adipose axis signaling, 

and systemic inflammation, resulting in divergent effects on body fat growth. Evidence from human studies 

remains limited and inconclusive. Very few observational studies and clinical trials have examined the 

association between composition of PUFA, particularly 6 FA and ω6/3 ratio, with obesity-specific 

parameters. A consensus on the optimal intake of 3 and ω6 subtype FAs and ω6/3 ratio in diet is lacking. 

We reviewed the temporal change in dietary PUFA composition in US, experimental studies that examine 

the effects of ɷ3 and ω6 FAs on body fat, and epidemiologic studies that assess the association between 

dietary PUFAs and the development of obesity. Future studies need to further evaluate dietary FAs and 

their biomarkers in association with objective and longitudinal measurements of body fat and elucidate the 

potential role of diet with a balanced 3 and ω6 FA composition in the primary prevention of obesity. 
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INTRODUCTION 

The ongoing obesity epidemic is a major public health issue 

in the US and worldwide. High fat intake has been implicated 

in the development of obesity,
1,2

 whereas evidence from 

prospective cohort studies 
3-6

 and randomized trials 
7-10

 

linking total fat intake to body weight gain remains weak and 

inconsistent. In recent decades, total fat and saturated fat 

intake (as % of calories) in typical western diet has fallen 
11,12

 

but the ratio of 6 to ɷ3 fatty acids (FAs) increased 

remarkably,
13

 in parallel with an alarming increase in the 

prevalence of overweight and obesity. Intake of ω3 FAs, 

particularly long-chain ɷ3 FAs that are mainly supplied by 

marine products, has shown benefits on multiple obesity-

related disorders. 6 FAs, more broadly available from 

vegetable oils to meat products, demonstrate less clear effect, 

with evidence suggesting possible harm.
14

 ω3 and ω6 FAs 

compete for common metabolic enzymes
15

 and incorporation 

to tissues.
16

 ω3 and ω6 FAs also may elicit opposing effects 

on adipogenesis,
17

 lipid homeostasis,
18,19

 brain-gut-adipose 

axis signaling,
20

 and systemic inflammation.
21

 Albeit strong 

laboratory evidence, epidemiologic data on the association 

between an imbalanced ɷ3 and ω6 FA intake with weight 

gain and obesity development is limited. With the lack of 

consensus on the optimal intake of ɷ3 and ω6 subtype 

polyunsaturated FA (PUFA) and the ω6/ω3 ratio, we 

reviewed experimental, population, and clinical study 

evidence regarding the effect of dietary PUFA composition 

(i.e. proportion of ω3 and ω6 FAs in total fat and the ω6/ω3 

ratio) on the gain of body fat and development of obesity, 

independent of total caloric and total fat intake. 

 

SIGNIFICANCE OF OBESITY EPIDEMIC AND 

OBESITY PREVENTION 

Over the last few decades, the prevalence of overweight 

(defined as body mass index or BMI 25 to < 30 kg/m
2
) and 

obesity (BMI ≥ 30 kg/m
2
) has dramatically increased in 

developed as well as developing countries.
22-25

  According to 

data from the National Center of Health Statistics 

(www.cdc.gov/nchs/data/factsheets), the prevalence of 

obesity has more than doubled since the 1970s among US 

adults aged ≥ 20 years.  Although recent estimates suggest 

that the overall rates of obesity have plateaued or even 

declined in some groups, the widespread obesity epidemic 

continues to be a leading public health problem in the US.
26,27

 

Worldwide, nearly 500 million people 20 years and older 

were considered obese and 1.4 billion overweight in 2008.
28

  

Obesity is a well-recognized modifiable risk factor for many 

adult-onset chronic diseases, such as cardiovascular disease 

(CVD),
29

 diabetes,
30

 hypertension,
31

 and cancer.
32

  The 

estimated total costs of health care for obesity-related 

conditions are as high as $139 billion annually.
33,34

 Effective 

strategies to control the obesity epidemic are urgently needed.  

Because the formation of adipose tissue appears to be an 
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irreversible process,
35 

maintenance of normal body fat will 

have more efficient and sustainable health benefits than the 

treatment of established obesity,
6,36

 highlighting the 

importance of obesity primary prevention. 

 

TEMPORAL CHANGE IN CONSUMPTION OF ɷ3 

AND ɷ6 FA IN THE UNITED STATES  

Since dietary fat represents a major source of energy, high fat 

intake has been considered a possible cause of obesity.
11,37,38

  

However, evidence from prospective cohort studies
3-6

 and 

randomized trials
7-10

 linking total fat intake with gain of body 

weight or body fat is weak and inconsistent. This discrepancy 

may be explained by dietary fat composition.
13,39

 In the past 

half-century, the total fat and saturated fat intake (as % of 

calories) in industrial countries has continuously fallen,
11,12

 

while the indiscriminate diet recommendations to substitute 

vegetable fats, which is high in ω6 and low in ω3 FAs, for 

animal fats have led to a substantial rise in intake of ω6 

FAs.
13

 These changes are accompanied by a significant 

increase in the supply of arachidonic acid (AA, 20:4ω6, 

broadly available from vegetable oil to meat products) but no 

parallel increase in supply of long-chain ω3 FAs (mainly 

from marine products) (Table 1).
40

  Moreover, substantial 

changes in animal feeds and food chain have been 

introduced.
13

 As a result, the ratio of ω6 to ω3 FAs in 

common Western diet has increased from the range of 1 to 4 
41

 to 10 to 40 (Table 2).
13,40

 This remarkable change in the 

balance of ω3 and ω6 FA intake may have contributed to the 

increasing prevalence of overweight and obesity in children 

and adults of many populations. In support of the 

recommendation by some research groups on reducing ω6 

FA intake to lower ω6/ω3 ratio,
42,43

 there is emerging 

evidence suggesting possible harm of excess ω6 FA intake.
14

  

However, the American Heart Association Scientific 

Advisory published in 2009 recommended ω6 FA intake of 

at least 5-10% of energy, based on evidence that the 

consumption of ω6 FAs (particularly linoleic acid, LA 18:2 

ω6) is associated with reduced risk of coronary heart 

disease.
44

 At the meantime, guidelines on specific intake of 

LA (18:2ω6), α-linolenic acid (ALA, 18:3ω3), and longer-

chain PUFAs are formulated in several European countries 

by health authorities, but the recommended levels vary 

substantially.
13

 The optimal intake of ω3 and ω6 subtype 

PUFAs and ω6/ω3 ratio remains unresolved.  

 

 
Table 1. Main Food Sources of ω3 and ω6 Fatty Acids in the United States in Year 1909 and 1999*. 

 

ω6 FA Food Category 
% of contribution 

ω3 FA Food Category 
% of contribution 

1909 1999 1909 1999 

LA, 18: 26 ALA, 18: 33 

 
Soybean Oil 0.076 43.1 

 
Soybean Oil 0.041 44.6 

    Fats 19.8 11.3 
 

Dairy 24.7 10.7 

 
Shortening 9.0 9.1 

 
Fats 27.6 8.2 

AA, 20: 46 EPA, 20: 53 

    Poultry 11.1 34.4 
 

Finfish 79.4 50.6 

    Eggs 29.9 23.2 
 

Shellfish 5.1 30.4 

 
Pork 21.5 17.7 

 
Poultry 2.23 13.7 

DPA, 22: 56 DHA, 22: 63 

    Poultry 10.6 63.7 
 

Finfish 60.0 43.4 

 
Finfish 29.0 15.4 

 
Poultry 6.6 25.4 

 
Shellfish 53.1 13.9 

 
Shellfish 8.1 12.5 

 
* Originally from Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the 

United States during the 20th century. Am J Clin Nutr. 2011;93:950-962. Data was obtained from the US Department of Agriculture (USDA). 

Abbreviations: FA: fatty acid; AA: arachidonic acid (20:4ω6); LA: linoleic acid (18:2ω6); ALA: α-linolenic acid (18:3 ω3); EPA: eicosapentaenoic acid 

(20:5ω3); DHA: docosahexaenoic acid (22:6ω3); DPA: docosapentaenoic acid (22:5ω3) 

 

 

DIVERGENT EFFECTS OF ω3 AND ω6 FA ON 

DEVELOPMENT OF OBESITY 

Advice to substitute PUFAs for saturated FAs (SFAs) is a 

cornerstone of worldwide dietary guideline since 1960s.
45

 By 

the time this guideline was initiated, PUFA was considered a 

uniform molecular category with beneficial effect of 

lowering blood lipids.
46

 Later research recognizes that 

PUFAs comprise of ω3 and ω6 subspecies, each having 

unique biochemical properties and playing different roles in 

metabolic outcomes including obesity. ω3 and ω6 FAs are 

distinguished based on the location of the first double bond. 

Both ω3 and ω6 FAs are essential for human because they 



 

 

 
North American Journal of Medicine and Science                                   Oct 2015 Vol 8 No.4                                                                                       165 

cannot be synthesized and must be obtained from diet. 

Precursor FAs in both classes, ALA (18:3ω3) and LA 

(18:2ω6) respectively, can be desaturated and elongated to 

longer-chain FAs of the same class, albeit to a very low 

extent (Figure 1). In contrast, the two classes cannot be 

converted, and they are metabolically and physiologically 

distinct. In cultured cells, ω3 FAs inhibited,
47

 while ω6 FAs 

increased,
48

 cellular triglyceride content. In animal models, 

feeding mother rats with a high-fat diet rich in LA (18:2ω6) 

resulted in hyperplasia or hypertrophy of white adipose tissue 

in suckling pups,
49

 whereas intake of fish oil rich in 

eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic 

acid (DHA, 22:6ω3) prevented the enhancement of fat 

mass.
50,51

 Thus, ω3 and ω6 FAs in diet potentially have 

divergent effects on the gain of body fat and the development 

of obesity.  

 

 
Table 2. ω6/ω3 Fatty Acid Ratio in Usual Diet of Industrial Countries. 

 

Populations Years ω6/ω3 Ratio  

Paleolithic  0.7941 

Greece 1960 1.0-2.041 

Japan 2000 4.041 

US 1909 5.440 

 1999 9.640 

France 1960 4.113 

 2000 1213 

UK 2000 1541 

India, rural 2003 5-641 

India, urban 2003 38-5041 

 

 

 

 

 
 

Figure 1. Elongation and desaturation of ω3 and ω6 fatty acids. 
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POSSIBLE MECHANISMS OF DIVERGENT 

EFFECTS OF ω3 AND ω6 FA ON OBESITY 

DEVELOPMENT 

Due to the similarity in chemical structure, ω3 and ω6 FAs 

compete for common metabolic enzymes, both in the process 

of elongation and desaturation of precursor PUFAs and in the 

synthesis of downstream metabolites such as prostacycline 

and thromboxane.
15

 They also compete for incorporation into 

plasma lipid fractions and cell membranes.
16

 In addition to 

the competitions in metabolism, ω3 and ω6 FAs may have 

divergent effects on the development of obesity via several 

other mechanisms (Figure 2, Table 3).
17-19

 

 

ω3 AND ω6 FA REGULATE GENE EXPRESSION IN 

ADIPOGENESIS AND LIPID METABOLISM 

During the development of obesity, pluripotent stem cell 

precursors give rise to multipotent preadipocytes, and 

preadipocytes differentiate into mature adipocytes; lipid then 

fills in to cope with the high exogenous levels of fats.
35

  

Because mature adipocytes do not divide in vivo or undergo 

significant turnover under physiological conditions, the 

proliferation of precursor cells and their differentiation into 

adipocytes are critical events in adipose tissue 

development.
49

 ω3 and ω6 FAs could serve as transcriptional 

factors to regulate the expression of genes involved in 

preadipocyte differentiation.
17

  ω6 FAs such as AA (20:4ω6) 

are potent adipogenic FA that up-regulates the expression of 

multiple adipogenic genes.  In the early steps of preadipocyte 

differentiation, the metabolite of AA (20:4ω6) by 

cyclooxygenase (COX) - prostacyclin - binds to its receptor 

(IP-R) on cell surface of preadipocytes, activates the protein 

kinase A (PKA) pathway,
52

 which ultimately up-regulates the 

expression of peroxisome proliferators-activated receptor 

(PPAR) family and leads to adipogenesis.
53-57

  The long-term 

adipogenic effect of AA is impaired by COX inhibitors.
58

  In 

IP-R knockout mice, no activation of PKA pathway occurs 

through IP-R, and thereafter the adipogenic effect of ω6 FAs 

is similar to ω3 FAs.
58

  In the later steps of preadipocyte 

differentiation, metabolites of AA (20:4ω6) by lipoxygenases 

(LOX) also activate PPARs expression and promote 

adipogenesis.
59

 

 

 
Table 3. Possible Mechanisms of Divergent Effects of ω3 and ω6 Fatty Acids on Obesity Development. 

ω6 FA ω3 FA 

Adipogenesis  

PG metabolite by COX activates the PKA pathway, up-regulates 

the expression of PPAR family and leads to adipogenesis.52-57 

Metabolites by LOX also activate PPARs expression and 

promote adipogenesis.59  

Decrease the expression of COX-2 mRNA and production of COX-2 protein.60  

Inhibit the activities of COX.61 

Directly inhibit the effect of ω6 FA derived PGs.62  

Down-regulate the production of cAMP or the catalytic subunit of PKA.49,63  

Lipid homeostasis  

Increase cellular triglyceride content by increasing membrane 

permeability.48  

Suppress the expression of genes involved in lipogenesis.18-19 

Increase the expression of genes involved in β-oxidation.18-19 

Brain-Gut-Adpose Axis  

Metabolites endocannabinoids can stimulate food intake and 

lipogenesis in liver.
66  

Increase leptin production.71 

Decrease adiponectin production and release.87  

Reduce the endogeneous endocannabinoids production or lower the receptor 

sensitivity.67,68 

Induce neuropeptide proopiomelanocortin, which curb appetite and lead to 

weight loss.20  

Decrease the gene expression of leptin72 and leptin receptor.73 

Increase adiponectin production and release.81,82  

Systemic Inflammation  

Metabolites are pro-inflammatory compounds. Metabolites are less pro-inflammatory or anti-inflammatory. 

 

Abbreviations: COX: cyclooxygenase; PKA: protein kinase A; PPAR: peroxisome proliferators-activated receptor; LOX: lipoxygenases; PG: prostaglandins. 

 

 

ω3 FAs could inhibit the adipogenic effect of ω6 FAs at 

multiple steps.  First, ω3 FAs such as DHA (22:6ω3) have 

been shown to decrease the expression of COX-2 mRNA and 

production of COX-2 protein.
60

  Second, some ω3 FAs, with 

potency of EPA(20:5ω3) > DHA(22:6ω3) > ALA(18:3ω3), 

could inhibit the activities of COX-1 and COX-2.
61

  Third, 

long-chain ω3 FAs could also directly inhibit the effect of 

prostaglandins arising from AA (20:4ω6).
62

  Finally, ω3 FAs 

[EPA(20:5ω3) > DHA(22:6ω3)] could down-regulate the 

production of cAMP
49

 or the catalytic subunit of PKA 
63

 in 

the prostacyclin-IP-R signaling pathway.  In addition to these 

inhibitory effects on adipogenesis, ω3 FAs also modulate 

lipid homeostasis by suppressing the expression of genes 

involved in lipogenesis including fatty acid synthase (FAS), 

lipoprotein lipase (LPL) and stearoyl-CoA desaturase-I 

(SCD-I) while increasing the expression of genes involved in 

β-oxidation such as acetyl-CoA oxidase (ACOX).
18,19

  The 

net result is a reduction in body fat deposition, mainly in liver 

and also in skeletal muscle and adipose tissue. 
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ω3 AND ω6 FAs AND BRAIN-GUT-ADIPOSE AXIS 

SIGNALING 

Another putative mechanism through which ω3 and ω6 FAs 

may affect body fat gain differently is the brain-gut-adipose 

axis.  First, ω6 FAs derived metabolites endocannabinoids 

can mediate central control of appetite and energy balance.  

Endocannabinoids can be produced from the hydrolysis of 

AA-containing membranes.
64

  Receptors of endocanna-

binoids are present in all tissues involved in energy 

homeostasis.
65

  Activation of endocannabinoids receptors 

will stimulate food intake and lipogenesis in liver.
66

  ω3 FAs 

can reduce the endogeneous endocannabinoids production or 

lower the receptor sensitivity.
67,68

  Moreover, long-chain ω3 

FA DHA (22:6ω3) can induce another anorexigenic 

neuropeptide proopiomelanocortin in the hypothalamus, 

which curbs appetite and leads to weight loss.
20

 

 

 

 

 
 

Figure 2. Potential effects of ω3 and ω6 PUFA on body fat growth and development of obesity. LOX: lipoxygenases; PG: prostaglandins; LT: 

leukotrienes; TX: thromboxane. 

 

 

Second, ω3 and ω6 FAs may affect leptin signaling pathway 

differently.  Leptin is a peptide hormone encoded by ob gene 

and is primarily produced and secreted by adipose tissue.  

The main function of leptin is the regulation of body weight 

by affecting appetite and energy expenditure.
69

 It has been 

postulated that human obesity might represent a state of 

leptin resistance.
70

  Dietary FA composition can affect leptin 

signaling.  In rats, a diet rich in ω3 and ω6 FAs led to higher 

serum leptin levels than a diet rich in SFAs and 

monounsaturated FAs (MUFAs).
71

  When ω3 FAs were 

studied specifically, however, a high intake of ω3 FAs 

decreased the gene expression of leptin
72

 and leptin 

receptor
73

 both in vitro and in vivo. It is therefore possible 

that ω3 and ω6 FAs have divergent effects on leptin 

production, secretion as well as receptor signaling. In a small 

trial of healthy non-obese men (n = 30) and women (n = 25), 

the serum leptin concentration markedly decreased in women 

but not in men who received diet rich in MUFAs and ALA 

(18:3ω3), despite only minor change in body weight and food 

intake. Serum leptin did not change in subjects who received 

diet rich in MUFAs only or ω6 FAs.
74

 

 

Third, ω3 and ω6 FAs could modulate expression and 

secretion of adiponectin differently.
75

  Adiponectin is a 

plasma protein that is produced and secreted exclusively by 

adipocytes.
76

  Adiponectin suppresses a number of 

pathological processes linked with obesity. Experimental 

studies have shown that adiponectin activates 5’-AMP-

activated protein kinase (AMPK),
77

 which stimulates FA 

oxidation and glucose utilization.
78,79

 These favorable effects 

ultimately lead to reduced lipid stores and improved insulin 

sensitivity in tissues.
80

 In mice model, diet rich in long-chain 

ω3 FAs EPA (20:5ω3) and DHA (22:6ω3) significantly 

increased the production and release of adiponectin in 
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adipose tissue.
81,82

 One possible mechanism is that EPA 

(20:5ω3) and DHA (22:6ω3) activate PPARγ, which in turn 

up-regulates the expression of adiponectin gene.
82,83

 In 

human studies, positive associations were found between 

circulating adiponectin and ω3 FAs in plasma and adipose 

tissue.
84,85

 Diet intervention studies further demonstrated that 

long-chain ω3 FA supplement raised plasma adiponectin 

concentration in human subjects.
86

 Few studies had examined 

the associations of ω6 FAs with adiponectin. In a recent 

study of 44 end-stage renal disease patients, plasma 

adiponectin was positively associated with erythrocyte ω3 

FAs (r = 0.58) while inversely associated with ω6 FAs (r = -

0.64) (both p < 0.01).
87

 

 

ω3 AND ω6 FAs METABOLISM AND SYSTEMIC 

INFLAMMATION 

The potential effects of ω3 and ω6 FAs are also related to the 

synthesis of specific eicosanoids through their downstream 

metabolism. The 2-series prostaglandins (PGE2, PGI2, and 

TXA2) and 4-series leukotrienes (LTB4) derived from ω6 

FAs by COX-2 and 5-LOX, respectively, are potent pro-

inflammatory compounds. In contrast, 3-series 

prostaglandins (PGE3, PGI3, and TXA3) and 5-series 

leukotrienes (LTB5) derived from ω3 FAs by the same 

enzymes are less pro-inflammatory. Since ω3 and ω6 FAs 

directly compete for access to the same converting enzymes, 

the balance in inflammatory status depends on the ω6/ω3 

ratio. If ω3 FA intake is high, ω6 FA derived pro-

inflammatory eicosanoids are inhibited, the risk of 

inflammatory conditions decreases. Additionally, the E series 

resolving (resolving E1 and E2, both formed by 5-LOX) 

derived from EPA (20:5ω3) and the resolvins, protectins, and 

maresins derived from DHA (22:6ω6) are all potent 

molecules that resolve inflammation, further enhancing the 

anti-inflammatory properties of ω3 FAs. In animal models, 

ω3 FAs, regardless provided in low-fat or high-fat diet, 

significantly lowered the expression of inflammatory markers 

such as monocyte chemoattractant protein-1 (MCP-1),
88

 

interleukin-6 (IL-6),
88

 interferon-γ (IFN-γ),
88

 and 

plasminogen activator inhibitor type 1(PAI-1).
89

 In 

adipoctye-derived stem cells from the ob/ob mouse, EPA 

(20:5ω3) and other ω3 FAs significantly reduced IL-6 

mRNA expression and secretion compared with AA (20:4ω6) 

or LA (18:2ω6).
90

 In human studies, ω3 FAs rich diet or ω3 

FA supplementation significantly lowered ω6/ω3 ratio in 

plasma,
91

 circulating levels of C-reactive protein (CRP),
92

 IL-

6,
91,92

 tumor necrosis factor-α (TNF-α),
93

 MCP-1,
94

 and 

adipose tissue macrophage number.
94

  Laboratory and 

clinical studies specifically on ω6 FAs or ω6/ω3 ratio with 

systemic inflammation are little. The direction of relation 

between obesity and inflammation has yet to be elucidated.  

It is well-accepted that accumulating adipose tissues promote 

the production of inflammatory cytokines and lead to an 

elevated chronic inflammation status.  Alternatively, it is also 

possible that early stage of excess fat mass causes the change 

in growth factor environment over time, and results in a shift 

toward preadipocyte differentiation.
95

 

 

EPIDEMIOLOGIC STUDIES OF PUFA INTAKE AND 

OBESITY 

Distinctive associations of ω3 and ω6 FA intake with the 

development of several obesity-related disorders, such as 

hyperlipidemia and atherosclerotic disease, have been 

observed in population studies.
41

 Associations of ω3 and ω6 

FA intake with the risk of type 2 diabetes, which is 

characterized by obesity and insulin resistance, are less clear. 

In prospective studies, the association between fish or 

EPA(20:5ω3) + DHA(22:6ω3) intake and incident type 2 

diabetes has been mixed, with some studies in the US 

showing positive relations.
96-98

 There are fewer studies on ω6 

FAs: in cross-sectional studies, higher long-chain ω6 FAs in 

skeletal muscle or erythrocyte phospholipids was associated 

with higher insulin sensitivity in healthy individuals,
99

 obese 

Pima Indians,
100

 and non-obese type 2 diabetic patients;
101

 

while in prospective studies, higher -linolenic acid (GLA, 

18:3ω6), eicosatrienoic acid (20:3ω6), and AA (20:4ω6) in 

serum cholesterol ester were associated with increased risk of 

type 2 diabetes.
102,103

  

 

The associations of dietary PUFAs with the development of 

obesity per se have been rarely studied in human populations. 

We are aware of only two prospective cohort studies that 

examined dietary FAs in relation to longitudinal 

anthropometric change. Among 41,518 women in the Nurses’ 

Health Study, the intake of SFAs, MUFAs, PUFAs, and trans 

FAs was each weakly associated with weight gain during 8 

years follow-up: the regression coefficients (β) on weight 

change (lbs) for each 1% difference in baseline FA intake 

(as % of calories) were 0.40, -0.31, 0.42, and 0.54, 

respectively (all P > 0.05).
104

  Among 16,587 men in the 

Health Professionals’ Follow-up Study, a 2% increment in 

energy intake from trans FAs that was isocalorically 

substituted for PUFAs was significantly associated with a 

0.77 cm gain in abdominal circumference during 9 years 

follow-up (P < 0.001), and this association remained 

significant after controlling for concurrent change in BMI.
105

  

These two studies have several limitations. First, both studies 

used self-administered semi-quantitative food frequency 

questionnaires (FFQ) to estimate dietary fat intake; second, 

both studies did not investigate ω3 and ω6 subtype PUFAs 

separately; third, both studies relied on self-reports to assess 

changes in anthropometry. 

 

Our group recently conducted a prospective study in 534 

participants of the Women’s Health Study (WHS) who had 

baseline measurement of erythrocyte FAs and a baseline BMI 

of 18.5 to < 25 kg/m
2
. Body weight was updated at a total of 

6 time points during an average of 10.4 years follow-up. 

After multivariable adjustment for lifestyle and dietary 

factors including total energy intake and physical activity, the 

weight gain (kg) during follow-up in the highest versus the 

lowest quartile of baseline erythrocyte FAs was 3.08 vs. 2.32 

for cis ω6 FA (p trend: 0.04), 2.07 vs. 2.92 for cis ω3 FA (p 

trend: 0.08), 2.93 vs. 2.05 for ω6/ω3 ratio (p trend: 0.046), 

and   3.03   vs.   2.27   for trans   FA (p trend: 0.06).
106

     The  
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Erythrocyte ω6/ω3 ratio was also positively associated with 

the risk of becoming overweight or obese (n = 186). To our 

knowledge, this is the first study that examined biomarkers of 

dietary PUFAs in association with longitudinal weight gain 

and newly developed obesity. However, the nature of this 

observational study did not allow investigation of the effect 

of fat composition change on adiposity measurement. 

 

Several interventional studies have found that ω3 FA 

supplementation can have beneficial effects on measurements 

of body weight and body fat in lean,
107

 overweight,
108,109

 and 

obese 
110

 individuals. Comparable study on ω6 FA is lacking. 

We identified one diet intervention trial conducted in France 

that aimed to investigate the effect of an increased ω3 FA 

combined with a reduced ω6 FA consumption, with no 

change in total energy and other macronutrient intake.
111

 A 

total of 17 (10 men and 7 women) healthy, normal weight 

subjects with a low usual intake of ω3 FAs were studied. 

After 10-week intervention via dietary recommendations 

focusing on ω6/ω3 ratio, intake of ALA (18:3ω3) increased 

and LA (18:2ω6) decreased, in erythrocyte membrane ω3 FA 

increased while ω6 FA did not change. The measurement of 

anthropometry including body weight, BMI, waist/hip ratio, 

fat mass, and plasma leptin concentration did not change 

significantly during the trial, but plasma adiponectin 

significantly increased (6.50 vs. 7.63 µg/ml at baseline and 

post-intervention, respectively) and plasma TNF-α (2.18 vs. 

1.50 pg/ml), IL-6 (1.28 vs. 1.00 pg/ml), and CRP (0.23 vs. 

0.17 mg/l) decreased. Major limitations of this trial include 

the small sample size, short-term intervention, and lack of a 

control group. There is clear need for more studies to further 

investigate the long-term effect of dietary ω6/ω3 ratio change 

and the optimal ω6/ω3 ratio for overall health. 

 

CONCLUSION 

ω3 and ω6 FAs are metabolically and physiologically distinct 

PUFA subclasses. Experimental studies suggest that ω3 and 

ω6 FAs may have divergent effect on body fat gain and 

development of obesity, though evidence on ω6/ω3 ratio 

specifically is little. Epidemiologic study of dietary PUFAs 

with the development of human obesity remains limited; 

there is currently no consensus on the optimal intake of ω3 

and ω6 FAs and ω6/ω3 ratio. More studies are needed to 

examine the association of dietary ω3 and ω6 FAs, ω6/ω3 

ratio, and their biomarkers with objective and longitudinal 

measures of obesity. These studies will provide insights 

regarding the long-term effects of dietary fat composition and 

whether a limit on ω6 FA intake and maintenance of a 

balance between ω3 and ω6 FAs will promote a favorable 

change in body fat mass, curb epidemic of obesity, and 

prevent obesity-related health problems. 
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cardiovascular disease; COX: cyclooxygenase; PKA: protein kinase A; 

PPAR: peroxisome proliferators-activated receptor; LOX: lipoxygenases; 

PG: prostaglandins; LT: leukotrienes; TX: thromboxane 
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