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Abstract 
Werner syndrome is an autosomal recessive disorder 

associated with premature aging and cancer 

predisposition. Cells from Werner syndrome patients 

show increased genomic instability and are hypersensitive 

to DNA damage agents. Werner syndrome is caused by 

mutations of the WRN gene. WRN protein is a member of 

RecQ DNA helicase family. It not only contains a 

conserved 3’-5’ helicase domain as other members of the 

RecQ family but also contains a unique 3’-5’ exonuclease 

domain. WRN recognizes specific DNA structures as 

substrates which are intermediates of DNA metabolism. 

WRN interacts with many other proteins, which function 

in telomere maintenance, DNA replication, and DNA 

repair through different pathways.  

[N A J Med Sci. 2010;3(4):205-207.] 

 
 

Werner Syndrome and its Cellular Phenotype  
Werner syndrome is a human autosomal recessive disorder 

that displays symptoms of premature aging, including early 

graying and thinning of hair, wrinkling and ulceration of 

skin, atherosclerosis, osteoporosis, and cataracts. In addition, 

Werner syndrome patients exhibit an increased incidence of 

diabetes mellitus type 2, hypertension, and are highly 

disposed to the emergence of benign and malignant 

neoplasms.1 Werner syndrome caused by mutation of the 

WRN gene, a member of the RecQ DNA helicase family.2
 

There are five known human RecQ helicases.3 Mutations in 

two other family members, BLM and RecQ4, are responsible 

for the two other premature aging syndromes, Bloom’s4 and 

Rothmund Thomson,5 respectively. The WRN gene encodes a 

1,432-amino acid protein2 that contains both 3’→5’ helicase 

and 3’→5’ exonuclease activities.6-9  
 

The cells from patients with Werner syndrome show 

premature replicative senescence compared with cells 

derived from normal individuals.10 The Werner syndrome 

cellular  phenotype  suggests  correlations among faulty DNA  
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metabolism,   genomic  instability,  and  senescence.   Werner 

syndrome   cells   show   hypersensitivity  to  selected  DNA-

damaging agents including 4-nitroquinoline-1-oxide 

(4NQO),11 topoisomerase inhibitors,12 and certain DNA 

cross-linking agents.13 Comparing with normal cells, Werner 

syndrome cells also exhibit increased genomic instability 

including higher levels of DNA deletions, translocations, and 

chromosomal breaks.14,15 These studies suggest that WRN 

plays an important role in DNA repair, replication, and 

recombination pathways. 

 

Werner Syndrome Mouse Model 
Two knockout mouse models for Werner syndrome have 

been established by using different strategies, and displayed a 

distinct phenotype. Lebel and Leder targeted the exons that 

encode motifs III and IV of the helicase domain of mouse 

WRN. The targeted gene expresses a fully translated WRN 

protein that lacks 121 amino acids of the helicase domain. 

Therefore, it is expected that it lacks helicase activity but 

retains other putative functions of the WRN protein. The 

homozygous mice were born viable, and during the first year, 

the mice appeared normal. By 24 months, 62% of the 

homozygous mice had developed some kind of hyperplasia 

or tumor.12 WRN∆hel/∆hel p53−/− double-knockout mice were 

shown to develop tumors more rapidly than the p53−/− 

parental line. Indeed, by 4–5 months, 50% of the double-

knockout population had developed tumors.16 The other 

knockout mouse, generated by Lombard and co-workers,17 

targeted the last exon of the helicase domain, which results in 

the expression of a truncated protein, a situation similar to 

that seen in most human Werner syndrome cases. Moreover, 

as is seen with many of the WS mutations in humans, these 

authors could not detect expression of the truncated protein. 

This mouse allele, therefore, can be considered as WRN−.17  

The WRN−/− homozygous mutant mice were reported to be 

perfectly healthy. Also, WRN−/− embryonic fibroblasts from 

these animals showed no signs of sensitivity to 4NQO or 

camptothecin, and there was no significant decrease in the 

replicative lifespan of these fibroblasts. However, p53−/− 

WRN−/− double-knockout mice died earlier, and the lack of 

p53 accelerated the mortality of WRN−/− or WRN−/+ mice. 

The lack of an obvious phenotype in this WRN−/− mice might 

be explained by the fact that telomerase is expressed 

constitutively in rodent cells, effectively masking any effect 

of a loss of WRN function.17 The finding of the mice with 

WRN and Terc double knock out exhibiting the typical 

Werner syndrome phenotype indicates that WRN regulating 

telomere function.18,19 
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Biochemical Characteristics of the WRN 

Protein 
The lack of phenotypes of WRN knockout mice underscores 

the need to study human WRN functions at biochemical and 

cellular level. WRN is a bipartite and bifunctional enzyme. In 

addition to the ATP-dependent 3’→5’ helicase and DNA-

dependent ATPase activities, it also possesses a functional 

3’→5’ exonuclease domain, which is similar to the 

exonuclease domain of E. coli DNA polymerase I.20 The two 

enzymatic functions are separable from each other. The 

mutation WRND82A and E84A, disables exonuclease 

activity, but retains its helicase activity.7 Similarly, the 

ATPase and helicase activities are diminished when the 

Lys577 residue in the ATPase domain is mutated, but the 

exonuclease activity is not affected by this substitution.7,21 

The helicase and exonuclease activities are physically 

separable, recombinant N-terminal fragments WRN1–368,22 

and the minimal exonuclease domain WRN70–24023 display 

exonuclease activity without helicase activity. Similarly, N 

terminal deletion derivatives, which lack the exonuclease 

domain, retain helicase activity. Although the two enzymatic 

activities are not affect each other, full function and 

regulation of catalytic activities require the presence of other 

regions of the protein, which could modify the activity of the 

minimal enzymatic domains.24 

 

The helicase activity of WRN shows very poor processivity 

as it preferentially unwound bubble substrates, forked 

structures and G-quadruplex DNA.25 WRN was also capable 

of branch-migrating Holliday junctions over distances as 

great as 2.7 kb.26 The 3’→5’ exonuclease activity also 

displays low processivity. Exonucleolytic cleavage results in 

the production of 5’-deoxymonophosphates.8  It prefers 5’ 

overhangs, bubbles, loops and Holliday junctions structures, 

but has little or no activity on double-stranded duplexes with 

blunt ends, partial duplexes with 3’ overhangs, or single-

strand DNA.24  

 

Functions of WRN Protein and its Subcellular 

Localization 
The multi-functional nature of WRN, as well as the range of 

different symptoms seen in Werner syndrome patients, 

suggests that WRN may be a versatile enzyme with an 

involvement in diverse cellular processes. The finding that 

WRN interacts physically and functionally with other 

proteins required for DNA metabolism supports this notion. 

WRN was found to interact directly with numerous proteins, 

including proliferating cell nuclear antigen and 

Topoisomerase I,27 Replication Protein A (RPA),28 p53,29,30 

the Ku complex,31,32 and DNA Pol δ.33 In this regard, WRN 

may be a functional component of various cellular processes, 

including DNA replication, transcription, recombination, and 

repair.  

 

WRN protein shows dynamic translocalization within the 

nucleus under different conditions. The WRN protein 

localizes to the nucleoli in a variety of cell types,34 and this 

localization is modulated by DNA damage during cell cycle. 

Upon serum starvation or treatment with hydroxyurea (HU), 

aphidicolin, 4NQO, etoposide or camptothecin, WRN 

migrates from nucleoli to discrete nuclear foci.26,30,35-37  The 

fact that DNA damage also induces the formation of RPA 

and RAD51 foci, and these co-localize with WRN almost 

fully (RPA), or partially (RAD51),37 emphasizes the potential 

role of the WRN protein in DNA replication and DNA repair.  

 

Conclusion Mark 
The increasing number of WRN interacting proteins 

involving DNA replication, recombination and repair provide 

the strong evidence that WRN functions in multiple DNA 

metabolic processes. WRN participates in several DNA 

repair pathways including double strand break repair for both 

homologous recombination (HR) and non-homologous end-

joining (NHEJ) pathways and base excision repair (BER) 

pathway. While it may not be essential in any individual 

process, WRN appears to have significant functional roles in 

these pathways. WRN resolves DNA intermediates that arise 

normally as a result of DNA repair and replication processes. 

However, the precise role of WRN protein in these processes 

still remains unclear. How the mutations of WRN protein 

contribute to the plethora of premature aging symptoms in 

Werner Syndrome is yet to be ascertained. Further study to 

address these important questions should lead to new insights 

regarding aging process.  
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