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Use of LC-MS/MS methods has improved sample preparation and increased throughput for the 

measurement of 40 or more organic acids in urine. In order to assess the significance of abnormalities that 

might be attributed to nutritional inadequacies or other metabolic disturbances, the week-to-week 

variation of results due to normal physiological responses needs to be established. This study determined 

the biological variability for 37 organic acids plus hippuric acid, D-arabinitol and 8-hydroxy-2’-

deoxyguanosine in overnight urine specimens from eight weekly samples submitted by 22 healthy adults. 

For the 40 analytes, CVb values varied from 12.3 to 74.3. Fourteen of the analytes had CVb values less than 

30 and another 19 of them were less than 50. Multiple analytes displayed the property of increasing 

variability with concentration that may be characteristic of most intermediary metabolites. Linear 

regression line slopes for CVb vs. concentration were tabulated to assist the use of this information. The 40 

analytes display biological variability in the range of disease risk markers such as serum lipoprotein 

cholesterol concentrations, cancer markers and thyroid hormones. The likelihood of a single measurement 

being representative of the true mean concentration varies with the analyte and the level found. Data 

reported here demonstrate reliability of results of urinary organic acid profiling performed under the 

reported analytical conditions. 

[N A J Med Sci. 2012;5(3): 148-156.] 
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INTRODUCTION 

Concentrations of organic acids in urine have been measured 

for diagnosis of inborn errors of metabolism and as markers 

of essential nutrient status, neurotransmitter disturbances, 

toxicant effects and small intestinal microbial overgrowth.1-8 

Elevations of specific organic acids have been reported as 

markers of nutritional deficiencies, including xanthurenic 

acid (vitamin B6),
9 formiminoglutamic acid (folic acid),10 and 

3-hydroxyisovaleric acid (biotin).11 Neurotransmitter 

metabolites in urine have been found useful in studies of 

cancer12 and behavioral disorders,13 and exposure to 

xenobiotic compounds has been monitored by measuring 

excreted metabolic products.14 Rationales for using organic 

acids as markers of various disorders have been reviewed.1-15 

 

Variability of urinary analytes has been the subject of 

multiple reports.16-19 When 10 overnight urine samples were 

collected by 10 patients with non-insulin-dependent diabetes 

mellitus, urinary albumin excretion showed total variability 

of 12%.20 A subsequent study found creatinine-normalized 

urine albumin variability that rose from 19% for normal 

controls to 61% for children with type I diabetes based on 

results from 3 consecutive morning urine samples.21  
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Knowledge of biological variation (CVb) can assist decisions 

about significance of results because, as CVb increases, the 

likelihood that any single result approximates the true mean 

value decreases, and repeated, independent measurements 

may be required for accurate assessment of risk. Knowledge 

of biological variation provides a means for assessing the 

usefulness of population-based reference ranges. For 

example, it would be useful to know that a result found to be 

in the 3rd quintile of a reference population would be 

expected to fall less than one quintile away for a specimen 

obtained a week later. Such knowledge would assist 

observations of analyte patterns when multiple, 

physiologically related analytes are reported. This study was 

conducted to determine the CVb of analytes in a profile of 

urinary organic acids. 

 

METHODS 

Study Subjects 

Twenty two healthy individuals (8 males and 14 females) of 

ages ranging from 23 to 65 who had stable diets and 

lifestyles, and who were not using any prescription 

medications were enrolled. Subject heights, weights, BMIs 

and fasting insulin levels are shown in Table 1.  Regular use 

of supplementary vitamins or oral contraceptives was 

allowed throughout the study period. All subjects were free 

of diagnosed endocrine, metabolic and immune disorders. 

None of the women became pregnant during the study. 

Original Research 
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Table 1. Subject demographics and metabolic parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study Protocol 

The study protocol was approved by an IRB prior to 

initiation of any steps. Subjects were instructed concerning 

the necessity of maintaining normal diet and lifestyle during 

the eight weeks of the study. At these sessions, the design 

and intention of the study were explained in printed and 

verbal format, and informed consent was obtained. All 

subjects completed a food frequency questionnaire as 

required for nutrient intake analysis by Viocare software. In 

addition, on each day of specimen collection, participants 

completed a survey including dietary and nutritional 

supplement intake, and they were asked to record any current 

symptoms or unusual events. No special dietary restrictions 

other than maintaining normal habits were imposed. 

 

Participants were asked to follow a standard protocol for 

collection of overnight urine specimens every Tuesday 

morning for 8 consecutive weeks. All urine collected in a 2 

liter plastic bottle from bedtime to morning arising was 

mixed by swirling, and two 10 ml specimens were transferred 

to separate tubes containing 1 mg thymol. The specimens 

were delivered to the laboratory the morning of collection 

and stored on ice prior to preparation for analysis. 

 

Each week of collection, specimens were analyzed in a single 

batch within 32 hrs. of collection. At the end of the eight 

weeks, one subject submitted an entire overnight urine 

collection on which replicate analyses were performed to 

determine within-run and between-run analytical variability. 

This specimen was analyzed in 5 replicates performed three 

times in every-other day intervals. As an alternative source of 

analytical variability data, replicate values were obtained 

during the span of the study for control solutions. Specimens 

submitted too late for processing the same day were stored at 

2 – 8C for processing on the next day. According to stability 

studies performed at the laboratory as part of routine method 

validation procedures, the urine samples were stable for 1 

week when stored at 2 - 8°C. 

 

 Age Gender 

Height  

inches 

Weight  

lbs. BMI 

Fasting 

Insulin 

(mIU/mL) 

Average 

Creatinine 

(mg/dL) 

1 32 M 75 210 26.3 2.0 193 

2 32 F 63 220 39.1 22.5 66 

3 29 F 67 125 19.6 6.8 94 

4 44 F 63 115 20.4 2.9 100 

5 65 M 71 180 25.2 9.6 65 

6 34 F 60 105 20.5 5.0 83 

7 30 F 66 173 28.0 7.3 104 

8 32 F 64 145 24.9 6.2 270 

9 51 M 69 133 19.7 2.0 71 

10 25 F 68 160 24.4 8.0 60 

11 23 F 65 144 24.0 6.5 132 

12 36 F 68 178 27.1 15.4 241 

13 32 M 74 220 28.3 10.5 185 

14 24 F 64 145 24.9 7.3 199 

15 31 M 68 138 21.0 2.0 223 

16 30 F 63 170 30.2 8.7 124 

17 28 F 64 160 27.5 6.0 184 

18 48 M 68 145 22.1 5.6 135 

19 33 F 67 143 22.4 12.4 98 

20 23 F 61 135 25.6 3.1 158 

21 24 M 68 130 19.8 2.8 225 

22 31 M 72 210 28.5 22.2 185 
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Table 2. Panel Compositions for LC/MS-MS Methods. These panels account for 35 of the reported analytes. 

Separate methods were used as described for 8-hydroxy-2’-deoxyguanosine, D-arabinitol, sulfate and L- and D-

lactic acids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimens were divided into aliquots used for seven 

procedures for measuring individual analytes or panels of 

related analytes. Three LC/MS-MS methods were used to 

analyze the panels shown in Table 2 with analytical 

parameters and deuterated internal standards optimized for 

each set of compounds. Details of methods have been 

published for Panel 222 and Panel 3.23 Panel 1 was performed 

by a method similar to that used for Panel 2, including 

isotopic dilution of specimens and quantitation from matrix-

matched calibration curves. Resolution of analytes was 

achieved by reverse-phase liquid chromatography with 

detection by tandem mass spectrometry in electrospray 

positive or negative ionization mode. Two other previously 

published LC/MS-MS methods were used to determine 8-

hydroxy-2’-deoxyguanosine24 and L- and D-lactate.25 D-

Arabinitol was measured on an Olympus AU400 using a 

single channel, self-blanking enzyme assay method 

(Arabinitech-Auto, manufactured by Marukin-Bio) without 

pretreatment. Sulfate was measured using a barium chloride 

turbidometric procedure, and creatinine was measured 

spectrophotometrically by the alkaline picrate method. 

According to standard laboratory procedures, two levels of 

controls were run at the beginning and middle of each batch 

for all methods. Analytical performance was confirmed by 

demonstration of control levels within 2 standard deviations 

of the means. 

 

Statistical Methods 

Total test variability (CVT) was calculated as the average of 

coefficients of variation for each analyte over all subjects. 

Biological variability (CVb) values for the measured 

compounds were calculated as the difference between (CVT) 

and analytical variability (CVa), using CVb = ((CVT)2- 

(CVa)
2)1/2.26 Since subject specimens were not analyzed in 

replicate it was not possible to derive CVa from those 

measurements. Instead, CVa values for most analytes were 

derived from the mean concentrations and standard 

deviations of data from 5 replicate analyses on three 

specimens from a single subject. Most analyte concentrations 

in that subject were close to the averages for the other 

subjects. However, for a few analytes CVa could not be 

calculated from the single subject specimen because the 

levels were below quantitative limits of detection. In those 

instances, variability of data from the between-run replicates 

of the normal control specimen during the eight weeks of the 

study was used to as CVa, as noted in the footnote to Table 3.  

Analyte concentrations in the normal control are adjusted to 

produce upper normal range concentrations. 

Panel 1 

(electrospray negative mode) 

Panel 2  

(electrospray negative mode)  

Panel 3  

(electrospray positive mode)  

cis-Aconitic acid Adipic acid Formiminoglutamic acid 

Citric acid Hippuric acid 5-Hydroxyindoleacetic acid 

Ethylmalonic acid Homovanillic acid 2-Methylhippuric acid 

Fumaric acid 4-Hydroxyphenylacetic acid Pyroglutamic acid 

Glucaric acid 4-Hydroxyphenyllactic acid   

3-Hydroxybutyric acid Indoxyl sulfuric acid   

3-Hydroxyisovaleric acid Kynurenic acid   

Hydroxymethyglutaric acid Suberic acid   

Isocitric acid Vanilmandelic acid   

2-Ketoglutaric acid Xanthurenic acid  

2-Ketoisocaproic acid    

2-Ketoisovaleric acid    

2-Keto-3-methylvaleric acid    

Malic acid     

Methylmalonic acid    

Orotic acid 

Picolinic acid     

Pyruvic acid    

Quinolinic acid     

Succinic acid     

Tricarballylic acid     
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Table 3. Biological variabilities of analytes are shown in order of increasing CVb (concentrations in mcg/mg creatinine).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Analytes in the replicate specimen at concentrations too low to allow variance calculation, for which normal control variances were used as CVa.  Concentrations as 

mcg/mg creatinine. 

Analyte CVT                                       CVa CVb   

Average 

Concentration   (Biol. 

Var. Range) 

Laboratory 95% 

Reference Range 

SD v. Conc. 

Slope 

Picolinic acid 16 9.7 12.3 6.1 (5.7-6.5) 1.8 – 11.2 0.14 

Isocitric acid 18 3.9 17.5 74.7 (68.2-81.2) 1.0 – 110 0.41 

Quinolinic acid 21 10.4 17.8 2.8 (2.6-3) < 5.8 0.16 

Ethylmalonic acid 20 9.2 18.3 2.1 (1.9-2.3) < 4.4 0.43 

cis-Aconitic acid 19 3.9 19.1 37.2 (33.6-40.8) 1.0 – 74 0.29 

Methylmalonic acid 22 9.7 19.4 1.1 (1.0-1.2) < 2.0 0.24 

Vanilmandelic acid 21 3.4 20.9 2.7 (2.4-3) 1.0 – 5.7 0.23 

Sulfuric acid 22 2.5 21.8 1380 (1230-1530) 762 – 2778 0.25 

8-Hydroxy-2-deoxyguanosine 26 4.4 25.5 3.6 (3.1-4.1) < 7.6 0.25 

Glucaric acid 31 16.4 25.9 4.3 (3.7-4.9) < 14.9 0.21 

Hydroxymethylglutaric acid 28 5 27.6 3.4 (2.9-3.9) < 5.2 0.15 

3-Hydroxyisovaleric acid 29 7.9 28.1 6.4 (5.5-7.3) < 7.9 0.35 

2-Methylhippuric acid 35 19.2 29.3 0.04 (0.03-0.05) < 0.073 -- 

Citric acid 34 5.7 29.5 386 (329-443) 9.0 - 670 0.16 

Homovanillic acid 30 3.7 30.1 3.6 (3.1-4.1) 0.8 – 13 0.01 

Pyruvic acid* 34 14 30.6 3.2 (2.7-3.7) < 4.9 0.21 

L-Lactic acid 37 15.2 33.5 9.4 (7.8-11.0) 3.0 – 47 0.74 

Pyroglutamic acid 34 3.5 33.5 25.5 (21.2-29.8) 29 - 85 1.04 

2-Ketoglutaric acid 49 34.3 35.2 14.5 (11.9-17.1) < 35 0.17 

3-Hydroxybutyric acid 40 17 36.2 1.7 (1.4-2.0) < 9.9 0.04 

4-Hydroxyphenyllactic acid 37 6 36.7 0.6 (0.49-0.71)  < 1.5 0.22 

Xanthurenic acid 37 5.4 36.9 0.7 (0.57-0.83) < 0.74 0.51 

Malic acid 50 32.7 38.2 0.53 (0.43-0.63) < 3.1 0.41 

Tricarballylic acid 40 11.2 38.3 0.51 (0.41-0.61) < 1.4 0.52 

2-Ketoisocaproic acid* 40 8 39.6 0.31 (0.25-0.37) < 0.52 0.78 

D-Arabinitol 40 0.7 40.4 23.4 (18.7-28.1) < 73 1.33 

4-Hydroxyphenylacetic acid 41 5 40.6 14.4 (11.5-17.3) < 34 0.54 

5-Hydroxyindoleacetic acid 42 1.9 42.3 2.9 (2.3-3.5) 1.6 – 9.8 0.65 

Adipic acid 44 7.2 43.1 5.5 (4.3-6.7) < 8.3 0.44 

Kynurenic acid 43 2.1 43.4 1.9 (1.5-2.3) < 2.7 0.41 

Indoxyl sulfuric acid* 44 7 43.5 47.2 (36.9-57.5) < 74 0.07 

2-Ketoisovaleric acid* 47 8 46.1 0.27 (0.21-0.33) < 0.49 0.89 

2-Keto-3-methylvaleric acid 56 30 48.2 0.31 (0.24-0.38) < 1.1 1.38 

Succinic acid 61 37.2 48.4 1.7 (1.3-2.1) < 20.9 0.64 

Formiminoglutamic acid 66 5.6 48.4 0.86 (0.7-1.1) < 2.2 0.01 

Suberic acid 52 4.4 52.0 1.5 (1.1-1.9) < 3.2 0.62 

D-Lactic acid 63 15.8 60.9 1.5 (1.04-1.96) < 7.0 1.21 

Hippuric acid 64 1.6 64.2 283 (192-374) < 1150 0.57 

Orotic acid 72 24.9 67.2 0.44 (0.29-0.59) < 1.01 0 

Fumaric acid 82 36.4 74.3 0.34 (0.21-0.47) < 1.35 0.01 
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Figure 1. Eight weekly levels are plotted for each of the 22 subjects and displayed in order of mean concentration (mcg/mg 

creatinine). Short, horizontal grey bars show mean levels for each subject. 

 

RESULTS 

Body mass index (BMI) values for the subjects ranged from 

19.6 to 39.1, and their fasting insulin values ranged from 2.0 

to 22.5 (see Table 1). Although some subjects had less than 

ideal values for both of these parameters, the overall subject 

population was judged to represent the general outpatient US 

population in this regard. Average creatinine concentrations 

 

in the 8 weekly urine specimens ranged from 66 to 241 

mg/dL. Fasting insulin levels above 15 microIU/mL were 

found in subjects 2, 12 and 22, but no apparent effects on 

analyte concentrations or variability were associated with 

them. 
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Values for essential nutrient intake based on food frequency 

questionnaire responses and calculated by the Viocare 

Pronutra software were at or above recommended intakes for 

those nutrients with potential to directly influence specific 

urinary organic acids. Nutrients considered most important in 

this regard were vitamins B1, B2, B3, B5, B12, biotin, folic 

acid and protein.   Values for the all other analyzed nutrients 

fell in ranges that are at or above reported averages for 

Americans.27 

 

Data from the laboratory’s commercial patient database were 

used to assess the effects of creatinine normalization. When 

organic acid profile concentrations from a large set of patient 

specimens were normalized to creatinine concentrations, the 

average CVT for all analytes fell by 17%. These changes are 

presumed primarily to reflect the reduction of subject 

variance due to hydration offsetting positive contributions 

from creatinine CV of 2.3%. All results from the study 

specimens are expressed as mcg/mg creatinine. 

 

For all analytes, average subject concentration, CVT, CVa, 

and CVb values are shown in Table 3.  During week 5 for 

subject 2 multiple, uniquely large excursions of results were 

found for 5 analytes (3-hydroxybutyric, 3-hydroxyisovaleric, 

citric, isocitric and cis-aconitic acids). The results for these 

analytes differed from the means of the other 7 weeks for 

subject 2 by an average of 10.5 standard deviations. The 

week 5 data for subject 2 were rejected when the data 

excursions were found to coincide with an unusually stressful 

period of personal and work-related events during that week, 

reported by the subject. The resulting CVb values for all 

analytes ranged from 12.3 for picolinic acid to 74.3 for 

fumaric acid. In order to evaluate the significance of 

variations within the healthy subjects, reference ranges from 

the laboratory database composed of an adult outpatient 

population with widely diverse conditions are included in 

Table 3. Also listed in Table 3 are the average analyte 

concentrations with ranges expressed as average ± CVb and 

linear curve fit slopes of SD v. concentration. For the large 

majority of analytes, the healthy subject ranges were within 

the laboratory 95% reference range limits. Generally, the 

exceptions are analytes with average healthy subject 

concentrations less than 1 mcg/mg creatinine. 

 

 

 
 

Figure 2. Plot of standard deviations vs. mean concentrations for the 22 subjects for L-

lactic acid. Similar linear relationships of various regression line slopes were found for all 

other analytes except for 2-methylhippuric acid that uniquely required an exponential 

curve fit (see text). 

 

 

Figure 1 shows all weekly values for (a) L-lactic and (b) 

quinolinic acid for each subject, presented in order of 

increasing subject mean concentrations. A greater tendency 

for L-lactic acid than for quinolinic acid for CVb to vary with 

mean concentration is apparent in these data. In order to 

present the degree of this trend for all analytes, linear 

regression curve trend line slopes for plots of standard 

deviation vs mean concentrations were determined as shown 

in Table 3. Figure 2A-2B show the curves and linear 

regression lines for lactic and quinolinic acids, and figure 2c 

shows the exponential curve fit required to fit the data for 2-

methylhyppuric acid. 

 

DISCUSSION 

The nature of biological variation for many disease risk 

factors has been examined.17,18,28 Serum lipids are one of the 

most thoroughly analyzed types of clinical laboratory data. 

Composite estimates of biological variability for total 

cholesterol (TC), high-density lipoprotein cholesterol 

(HDLC), low-density lipoprotein cholesterol (LDLC) and 
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triglyceride (TG) by meta-analysis of 30 published studies 

was done in order to determine the number of patient 

specimens required to obtain reliable values.29 Variability 

was found to depend on the number of subjects. The results 

led to suggesting a minimum of two specimens per patient 

for TC and four for HDLC, LDLC, and TG for reliable 

estimate of average levels. Inter-individual biological 

variation for cancer markers CA 19-9, carcinoembryonic 

antigen and alpha-fetoprotein were determined to be 27.2, 

30.8 and 26.6%, respectively.30 Similarly, the variability for 

serum thyroid stimulating hormone, free T3, and free T4 in 

Turkish people were 37.2, 22.3, and 13.2% respectively.31 

 

Reports of values for CVb have led to conclusions regarding 

the number of samples required for reliable estimates of 

serum lipids29 and the medical usefulness of urine for 

diagnosis and screening of pathologies.19 When CVb was 

determined from twice weekly measurements in 20 healthy 

adults, values for cholesterol, HDL cholesterol, apo A-I, and 

apo B were less than 8%, cholesterol was less than 10%, and 

triglyceride was 28%. Intra-subject CVb for Lp(a) ranged 

from 1% to 50% among the 20 subjects in a direct 

concentration-dependent manner.26 Similar direct 

concentration-dependent variation in CVb was found for most 

analytes in this study. However, the overall mean CVb values 

can provide a measure of the usefulness of population-based 

reference ranges. 

 

Sample preparation can have large effects on analyte 

variability. The GC-MS methods used in most early studies 

of urinary organic acids required steps of extraction, transfer, 

evaporation and derivitization that are error-prone. In 

addition, for profiles containing numerous analytes, methods 

requiring extractions and derivitizations are likely to have 

low recoveries for some analytes due to issues of solubility, 

volatility, or lack of reactivity. These are principal reasons 

for the superiority of LC-MS/MS methods where minimal 

sample preparation is needed. Further method accuracy and 

reliability is achieved by performing sub-profiles as 

necessary to allow LC and tandem MS conditions suitable for 

specific analyte types and by utilizing deuterated internal 

standards to correct for deviations of instrumental 

performance.22,25,32 The methods used in this study 

incorporated these approaches to achieve the analytical 

performances reported. 

 

For most analytes in this study, analytical variations (CVa) 

were small compared to CVT values. Four analytes had CVa 

values above 20% due to their concentrations in the replicate 

specimen being near their limits of detection where analytical 

variability generally rises (see Table 3). The kynurenin 

pathway products, picolinic and quinolinic acids that reflect 

states of inflammation had some of the lowest CVb values 

(12.3 and 17.8, respectively) in the healthy individuals of this 

study. On the other hand, indican and D-Lactic and hippuric 

acids, compounds that can be influenced by normal 

fluctuations of intestinal bacteria growth had some of the 

highest CVb values (43.5, 60.9 and 64.2, respectively). Other 

compounds of moderate to higher variability such as 

succinic, fumaric and suberic acids may be sensitive to 

macronutrient intake, illustrating the potential for using 

challenge compounds that can raise metabolic throughput to 

achieve improved clinical significance of abnormal results. 

 

When biological variations are compared to the laboratory 

reference ranges, the subject data is found generally to fall 

consistently below 95 percentile limits. For fumaric acid, the 

analyte with the highest CVb, overall variation 0f 74.3% 

about the mean of 0.4 mcg/mg creatinine indicates that, on 

average, values consistently fall under the upper reference 

limit of 1.35 mcg/mg creatinine, showing consistency of 

normal results in healthy individuals. 

 

The L-lactic acid data for all subjects in Figure 1A shows 

general characteristics that are representative of most of the 

analytes studied. Concentrations tended to fall in the range of 

6 to 20 mcg/mg creatinine, which is normal relative to the 

laboratory 95% reference interval of 3-47 mcg/mg creatinine. 

The well-known physiological regulatory action that resists 

sustained elevated L-lactic acid may explain some 

variations.33 For example, in 2 of the first 3 weeks for subject 

11, levels of 24 and 37 mcg/mg creatinine were found, 

followed by 4 weeks of values below 7.8 mcg/mg creatinine. 

Similarly, subjects 6 and 20 had CVb’s well above the overall 

average because their results never stayed in the higher 

ranges for more than a single week. Such effects may 

produce CVb values for normal biochemical intermediates 

that increase with mean values because normalizing 

physiological forces tend to act more aggressively when 

concentrations rise. Such data may lead to further refinement 

of reference ranges by identifying individuals with sub-

clinical metabolic weaknesses who should be excluded from 

reference populations. Blood L-lactate is a metabolic marker 

that can signal poor homeostatic regulation at levels less than 

frank elevations characteristic of high disease risk.34 

 

The linear trend line slopes of concentration vs. mean plots 

listed in Table 3 range from near zero for 

formiminoglutamate to 1.33 for the intestinal yeast marker D-

arabinitol. The data plotted in Figure 2A for L-lactic acid 

with a standard deviation increase of 0.74/mcg/mg creatinine 

is representative of those analytes that have higher tendencies 

to display this effect. The slope values provide a means of 

weighing each analytes relative tendency to display 

variability that increases with concentration. One potential 

use of this information is to generate weighting factors for 

interpretation of multiple-analyte profiles. For example, a 

result slightly above the 95%ile limits for fumaric acid would 

be weighted less than a similar result for quinolinic acid. The 

phenomenon of increasing variability with concentration for 

biochemical pathway intermediates arises due to homeostatic 

influences. As the concentrations of such analytes like 

suberate and ethylmalonate increase in liver, muscle and 

other tissues, compensatory events tend to come into play to 

normalize their levels. In the case of D-arabinitol, the high 

variability may be due to short bursts of intestinal yeast 

growth that are suppressed by normal immune responses in 

healthy individuals. In highly abnormal states such as 

inherited metabolic disorders, normal biochemical 

intermediates can be consistently elevated, producing 
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hallmark features such as phenylpyruvic aciduria found in 

PKU. 

 

No value is shown for 2-methylhippurate in Table 3 because 

an exponential trend line was required to fit the CVb vs. 

concentration data. This compound, a sensitive marker of 

xylene exposure, was consistently found in low 

concentrations with low variance for most subjects. The two 

subjects with the highest 2-methylhippuric acid CVb 

reported, on interrogation, exposure events of house painting 

or cleaning fluid use that occurred shortly prior to the single 

week excursions of 2-methylhippurate. Rapid xylene 

clearance following sporadic episodes of exposure among 

individuals with relatively low average exposure may explain 

this behavior. Thus, on any week where elevated results were 

found, levels routinely fell to lower levels by the following 

Monday evening, producing the exponential curve fit 

requirement. 

 

Biological variability data is useful for defining the number 

of specimens needed to approximate true average analyte 

concentration.26 On the other hand, it can be used to estimate 

the probability of any single measurement being within a 

specified range of the true average. In routine clinical 

practice, decisions are frequently made based on single 

measurements as general awareness of variability is taken 

into account. When multiple, related compounds are 

measured, pattern analysis can strengthen interpretations, 

because random fluctuations are less likely to cause similar 

perturbations of multiple analytes. An example in this profile 

is the set of lactic, pyruvic, and alpha-ketoglutaric acids that 

become elevated due to thiamin deficiencies.35 

 

CONCLUSION 

Routine determination of normal biochemical intermediates 

in urine over the entire physiological range is challenging due 

to the necessity of maintaining accurate calibrations at low as 

well as high levels. In order to produce data of sufficient 

accuracy for clinical inspection of mild elevations and, in 

some cases, suppressed excretion below low normal limits, 

laboratories must develop rugged methods with sufficient 

sensitivity and analytical dynamic range. Ruggedness here 

implies that the assay performance is independent of the 

person performing the test and the results are consistent over 

extended time intervals. These data show for the first time the 

feasibility of achieving such analytical performance in 

reporting a profile of 40 organic acids in human urine. The 

phenomenon of variability increasing with concentration 

needs further investigation and it suggests the need for 

innovative ways of expressing results so that they may be 

properly interpreted no matter where they fall relative to 

normal ranges. 
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