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High throughput DNA and RNA sequencing (DNA-Seq and RNA-Seq) is increasingly impacting the clinical 

practice of medicine.  RNA-Seq has so far had a smaller role in the clinical practice, but it has 

advantageous features and is complementary to DNA-Seq.  RNA-Seq can profile the abundance and 

composition of the entire transcriptome, including both mRNA and non-coding RNA. It is thus capable of 

revealing diverse functional and structural changes affecting genes, such as gene overexpression, silencing 

and various abnormalities and alterations among which may be substitutions, deletions, inversions, 

alternative splicing and gene fusions.  As cancers are characterized by many of these changes, RNA-Seq can 

be valuable for diagnosing and characterizing tumors.  Here we will describe the use of RNA-Seq in cancer 

diagnosis and personalized therapy, with an emphasis on the detection of fusion transcripts, which are 

frequently associated with cancer and are often drug targets for cancer therapy. 
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INTRODUCTION 

Over the past decade, the next generation sequencing (NGS) 
technologies for rapid, high-throughput analysis of the 
genome and transcriptome have revolutionized basic 
biomedical research and increasingly found a place in 
diagnostic medicine.1,2 DNA-Seq, including targeted and 
whole-exome sequencing, has been highly successful for 
detecting germline and somatic mutations. However, DNA-
Seq cannot detect gene rearrangements unless expensive 
whole-genome sequencing is performed, and several other 
crucial assessments are beyond the reach of DNA-Seq, 
including gene activity and alternative splicing of RNA. 
These limitations of DNA-Seq are addressable using RNA-
Seq, which can detect gene rearrangement, RNA abundance 
and splicing as well as sequence variations (such as small 
mutations in expressed regions of the genome).  As DNA-
Seq detects genetic lesions while general RNA-Seq reveals 
their consequences, the two are complementary. This review 
is intended as a primer for the RNA-Seq technology and its 
application in cancer diagnosis and therapy.  For in-depth 
discussions of the technology, readers are referred to several 
recent reviews.3-5 
 

OVERVIEW OF RNA-SEQ TECHNOLOGY 

The basic components of the RNA-Seq technology in the 
clinical context include five major steps: RNA extraction 

from clinical samples, NGS library preparation, sequencing, 
data analysis, and data interpretation/reporting, as depicted in 
Figure 1 and detailed below.   
 
RNA extraction. Body fluids, fresh-frozen or formalin-fixed, 
paraffin-embedded (FFPE) tissues are often the sources of 
RNA.  RNA from body fluids and frozen tissues can be 
purified using routine RNA extraction methods or 
commercial kits, such as the RNeasy kit (Qiagen).  For the 
FFPE tissues, cancer cells are excised from tissue sections 
usually by manual microdissection or by laser capture 
microdissection.  RNA is then isolated using kits such as the 
RNeasy FFPE kit (QIAGEN), FormaPure (Agencourt), and 
the Human FFPE RNA-Seq Multiplex Systems (Ovation).  
For RNA from body fluids and frozen tissues, 10 ng can be 
sufficient for RNA-Seq, but > 100ng RNA is often needed if 
isolated from FFPE tissues, due to its fragmented nature and 
generally inferior quality.  
  
NGS library preparation.  NGS libraries consist of cDNAs 
converted from the RNA and end-adapted for sequencing.  
Libraries for whole transcriptome are prepared using kits that 
are available from several vendors and fit the respective 
sequencing platforms, such as Illumina’s TruSeq Stranded 

Total RNA Sample Prep Kit and Ion Torrent’s Ion Total 

RNA-Seq Kit.  Kits can also be purchased to generate NGS 
libraries for targeted analysis of candidate RNAs.  For 
example, Illumina’s TruSeq Targeted RNA-Expression Kit 
offers customizable mid- to high-plex gene expression 
profiling of genes involved in specific pathways and disease 
states. Furthermore, Enzymatics’s Archer FusionPlex Assays, 
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based on “anchored multiplex PCR”,
6 can detect gene fusions 

and mutations in different cancers without prior knowledge 
of the specific fusion partners.   
 
Sequencing. The NGS principles and different platforms have 
been covered in numerous reviews.1,7-9 A comparison of 

different platforms is listed in Table 1.  Illumina and Ion 
Torrent platforms are commonly used in clinical laboratories.  
Illumina’s Nextseq 500 and Ion Proton are suitable for 

sequencing the whole transciptome, whereas Illumina’s 

MiSeq (MiSeqDx) and Ion Torrent’s PGM are ideal for 

targeted sequencing. 
 

 
 

Figure 1. A flow chart of RNA-Seq in clinical settings. 
 

 
 

Table 1. A comparison of commonly used deep sequencing platforms. 
 

Company Platform Seqencing Mechanism 

Current 

Model 

Maximum 

Read 

Length (bp) 

Highest 

Throughput 

Turnaround 

Time 

Error Rate 

(%) 

Roche 454 
Synthesis reaction + pyrophosphate 
release, chemiluminescence detection 

GS FLX+ 1000 700Mb 23 hours 1 
GS Junior 400 35Mb 10 hours 1 

Illumina Solexa 
Synthesis reaction + colorimetric label 
detection 

HiSeqX 150 1.8Tb 3 days 0.4 
HiSeq 2500 150 180Gb 40 hours 0.4 
NextSeq 500 150 39Gb 26 hours 0.4 
MiSeq 
(MiSeqDx) 300 15Gb 8.5 hours 0.4 

Life 
Technology 

SOLiD 
Ligation reaction + colorimetric label 
detection 5500xl W 50 320Gb 6 days 0.1 

Ion 
Torrent 

Synthesis reaction + proton release and pH 
sensing 

PGM 400 2Gb 3 hours 1 
Proton 400 10Gb 4 hours 1 

Oxford 
Nanopore Nanopore 

None reaction, single molecule 
electronics-based sensing 

GridION 100,000 185Mb 6 hours 4 

MinION 100,000 
28G/10nodes. 
1day N/A* 4 

Pacific 
Biosciences PacBio 

Synthesis reaction + single molecule real-
time (SMRT) colorimetric label detection PacBio RS II 30,000 350Mb 10 hours 15 

 
* GridION has no fixed turnaround time because it is designed to be a cluster aggregated with nodes.  A user can run one or more nodes for minutes or days 
according to how much data is needed to complete the experiment.         
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Data Analysis. The raw sequence reads generated by the 
sequencing machines are analyzed using various 
bioinformatics tools. The reads are first aligned to reference 
genomes to construct transcriptomes. Transcript abundance is 
calculated using read counts, while alternative splicing and 
gene mutations are inferred by comparing the transcriptomes 
with the reference genomes.   
 
Commonly used bioinformatics tools are classified based on 
their functions (columns 1-2, Table 2). Different programs in 
the same functional categories do not always produce 
consistent results even though they may use the same 
algorithms (column 4), and so the data must be interpreted 
with caution. These software programs are mostly (69 of 72) 
from open-source communities and thus freely available; 
indeed, such open source software (OSS) programs have 
been a cornerstone in the RNA-Seq technology.10 The 69 

OSS are mainly licensed by Artistic, BSD, GPL or LGPL,11 
with > 50%  (35 of 69) by GPL according to which new tools 
using the 35 softwares are obligated to be similarly open-
sourced. In clinical applications, the OSS codes often require 
modifications to become user-friendly and need-tailored, and 
any fault in the operation must be quickly corrected, which 
requires substantial bioinformatics expertise.  Alternatively, 
clinical labs may resort to commercial software programs, 
which are typically more user-friendly and well supported, 
though such programs are costly and inflexible and thus 
generally less useful than OSS once a user becomes familiar 
with their operation.12 The bioinformatics tools listed in the 
table are relatively new, developed since 2008 (column 6, 
Table 2),13-81 and additional software packages are expected 
to emerge in parallel with improved or novel sequencing 
platforms. 

 
 
 
 
Table 2. A list of bioinformatics tools for RNA-Seq data analysis. 
 

Function Sub-Category Tool Name Algorithm Note Code License Published Year and Reference 
Alignment Non Spliced Maq  spaced seed GPL 2008[13] 

SOAP seed and hash look-up table GPL 2008[14] 
SeqMap    spaced seed codes open to academia 2008[15] 
RazerS spaced seed/q-gram GPL 2009[16] 
Bowtie   Burrows-Wheeler transform Artistic and GPL 2009[17] 
BWA Burrows-Wheeler transform/ Smith-Waterman algorithm GPL 2009[18] 
BFAST Smith-Waterman algorithm GPL 2009[19] 
SHRiMP Smith-Waterman algorithm/q-gram BSD 2009[20] 
NovoAlign Needleman–Wunsch algorithm codes not open but binaries free for academic 2009[21] 
SOAP2 Needleman–Wunsch algorithm GPL 2010[22] 
GNUMAP Needleman–Wunsch algorithm codes open 2010[23] 
Stampy  Burrows-Wheeler transform Codes open to academic 2011[24] 
SeqAlto Needleman–Wunsch algorithm codes not open but binaries free for academic 2012[25] 
Mosaik Smith-Waterman algorithm GPL 2014[26] 

Spliced QPALMA large margin algorithm GPL 2008[27] 
TopHat candidate exons pairing , implanted bowtie codes open 2009[28] 
SMALT Smith-Waterman algorithm GPL 2010[29] 
GSNAP SNP-tolerant codes open 2010[30] 
PALMapper machine learning algorithm, implanted QPALMA GPL 2010[31] 
SplitSeek anchors extension GPL 2010[32] 
SpliceMap Optional filtering codes open 2010[33] 
MapSplice  Anchoring exons flanking alignment GPL 2010[34] 
HMMsplicer Hidden Markov Model codes open 2010[35] 
STAR Maximal Mappable Prefix GPL 2012[36] 
GEM Filtration/BWT codes open to academic 2012[37] 
Subread seed-and-vote GPL 2013[38] 

Expression 
Differences 
Analysis 

Non-
Bioconductor 

Useq           negative binomial distribution BSD 2008[39] 
Cufflinks Beta negative binomial distribution BSL, codes open 2009[40] 
TSPM two-stage Poisson model codes open 2011[41] 
RSEM Dirichlet prior distribution GPL 2011[42] 
NBPseq Negative binomial distribution GPL 2011[43] 
Samseq Nonparametric method LGPL 2011[44] 
BBseq Negative binomial distribution GPL 2011[45] 
Gfold  posterior distribution, single biological duplicate codes open 2012[46] 

Bioconductor Limma voom transformation of counts GPL 2005[47] 
Deseq Negative binomial distribution GPL 2010[48] 
baySeq Negative binomial distribution GPL 2010[49] 
NOIseq Nonparametric method Artistic 2011[50] 
edgeR Negative binomial distribution LGPL 2012[51] 
sSeq Negative binomial distribution GPL 2013[52] 
EBSeq Negative binomial distribution Artistic 2014[53] 

Transcriptome 
Assembling 

  
  
  
  

Trans-Abyss mutiple  k-mer assemblies codes open to academic 2010[54] 
Trinity single k-mer assemblies, dynamic filters BSD 2011[55] 
Oases mutiple  k-mer assemblies, dynamic filters GPL 2012[56] 
SOAPdenovo-Trans mutiple  k-mer assemblies, sparse-pregraph GPL 2014[57] 

Mutation 
Detection 

  
  
  

SNPiR implanted GATK codes open 2013[58] 
MMAPPR  implanted Samtools pileup codes open to academic 2013[59] 
Rnaseqmut Normal-Tumor comparison codes open 2013[60] 
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Table 2. A list of bioinformatics tools for RNA-Seq data analysis. (Continued) 

 
 

Data interpretation and reporting. Data are evaluated for 
clinical relevance and significance based on its nature and 
published literature. For whole transcriptome analysis, it can 
be challenging to interpret the data rapidly and accurately for 
clinical use. For targeted RNA-Seq, commercial companies 
developing specific RNA-Seq panels usually also develop 
special software pipelines that can generate reportable results 
from raw data.  Unlike simple pathogenic DNA variants such 
as single nucleotide variants (SNVs) and insertions/deletions 
(INDELs), information about gene expression and fusions is 
not as well represented in databases such as Catalogue of 
Somatic Mutations in Cancer (COSMIC), the Online 
Mendelian Inheritance in Man (OMIM), and the Human 
Gene Mutation Database (HGMD).  NCBI UniGene will be 
helpful in some extent as a source for gene expression 
information with regard to specific genes. National Cancer 
Institute’s Cancer Genome Anatomy Project (CGAP) website 

is a good resource for gene expression and fusion in cancer 
(http://cgap.nci.nih.gov/Catalog). As part of CGAP, the 
Mitelman Database of Chromosome Aberrations and Gene 
Fusions in Cancer has some very useful tools such as 
“Clinical Associations Searcher”.  

 

APPLICATION OF RNA-SEQ TO CANCER 

DIAGNOSIS AND TARGETED THERAPY 

Cancer is characterized by a dazzling array of genetic lesions 
directly affecting genes, including point mutation, insertion, 
deletion, translocation, exon-skipping and gene fusion. If the 
mutant genes are transcribed, these lesions become detectable 
by RNA-Seq.  At the same time, RNA-Seq measures the 
transcript abundance, thus revealing the expression levels of 
the mutant genes.82,83 RNA-Seq can thus identify biomarkers 
for cancer risks, subtypes and stages of progression, 
providing crucial insights into cancer diagnosis, prognosis 
and potential personalized therapies. For example, whole 
transcriptome RNA-Seq reveals that T-cell acute 
lymphoblastic leukemia (T-ALL) have diverse defects 
including point mutations, insertions, deletions, 
translocations, exon-skipping and gene fusion to novel 
partners such as kinases.83 Based on the known and novel 

driver mutations at protein coding genes and their mRNA 
expression levels, the patients are classified into different T-
ALL subtypes, which has important implication for 
personalized medicine. RNA-Seq similarly helps identify 
biomarkers for breast cancers. Specifically, RT-PCR analysis 
of FFPE tumor samples from a cohort of 136 breast cancer 
patients has previously revealed 21 genes the expression of 
which is associated with  breast cancer recurrence (the 
Oncotype DX Breast Cancer Assay).84 RNA-Seq of the same 
tumor samples confirmed the RT-PCR data, and uncovered 
more than two thousand additional RNAs that are also 
strongly associated with breast cancer recurrence risk.85 
RNA-Seq is particularly useful for detecting gene fusions, as 
described below. 
 

RNA-SEQ DETECTION OF GENE FUSIONS IN 

CANCER 

A hallmark of cancer is the fusion of segments of one gene to 
that of another, which can result from multiple types of 
genetic lesions, including translocation, deletion and 
inversion. Depending on the fusion partners, gene fusion can 
cause aberrant activation of oncogenes. Consequently, gene 
fusion analysis is widely used for cancer diagnosis (i.e, RET-
PTC for thyroid cancer), prognosis (i.e, TMPRSS2-ERG for 
prostate cancer) and targeted therapy (i.e, EML4-ALK for 
lung cancer). Gene fusions are usually detected using FISH 
or RT-PCR.  However, FISH is technically challenging and 
results are sometimes equivocal, while conventional RT-PCR 
requires prior knowledge of both fusion partners, which can 
be problematic because very often, a gene is fused to 
multiple possible partners and each partner may have 
multiple variants, making it impractical to interrogate for all 
possible fusion events. 
 
RNA-Seq provides a powerful solution for detecting all 
fusion events, as long as the transcripts are expressed. Both 
whole transcriptome and targeted sequencing have been used.  
For example, whole transcriptome sequencing reveals over 
one hundred fusion events in three independent studies, each 
involving over 70 patients.85-87 Interestingly, the high 

Function Sub-Category Tool Name Algorithm Note Code License Published Year and Reference 
Alternative Splicing 
Detection  

  
  
  
  
  
  
  
  
  

MISO Markov Chain Monte Carlo BSD 2010[61] 
ALEXA-Seq Identity of the subset of differentially expressed features GPL 2010[62] 
Alt Event Finder identity novel cassette exon event codes open 2012[63] 
DEXseq generalized linear models GPL 2012[64] 
r-Diff with non-parametric test GPL 2013[65] 
SAJR Binomial Generalized Linear Model codes open 2013[66] 
ARH-seq entropy, Weibull distribution codes open 2014[67] 
RSVP ORF graph codes open 2014[68] 
SwitchSeq identity of transcript changes across conditions GPL 2014[69] 

Fusion Detection Single End Reads GSNAP SNP-tolerant codes open 2010[30] 
SplitSeek anchors extension GPL 2010[32] 
Tophat_fusion      anchors extension codes open 2011[70] 
FusionMap Making pseudo PE reads codes not open but binaries free for academic 2011[71] 
FusionFinder Making pseudo PE reads GPL 2012[72] 
GSTRUCT probabilistic models codes open 2012[73] 

Pair End Reads FusionSeq building fusion junction library codes open 2010[74] 
Fusionhunter with some Kent Source Code GPL 2011[75] 
Chimerascan realignning the trimmed reads GPL 2011[76] 
snowshoes-FTD with prediction of fusion mechanism GPL 2011[77] 
DeFuse confidence measure codes open 2011[78] 
ShortFuse estimating fusion transcript aboundances codes open 2011[79] 
EricScript recalibrating junction reference GPL 2012[80] 
SOAPfuse can detect low coverage codes open 2013[81] 
STAR Maximal Mappable Prefix GPL 2013[36] 

http://cgap.nci.nih.gov/Catalog
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frequency of fusion transcripts are correlated with poor 
outcome in human breast cancer patients, suggesting the 
prognostic value of the fusion transcripts.  
 
Major drawbacks associated with whole transcriptome 
sequencing are that it requires sophisticated bioinformatics 
analysis and is costly.  In contrast, targeted sequencing 
involves relatively simple bioinformatics, and also gives 
greater depth of coverage at the same numbers of reads, 
resulting in higher sensitivity, specificity and cost-
effectiveness; it may be the method of choice when looking 
for the fusion partners of a particular gene of interest (GOI).  
In targeted sequencing, the fusion transcripts to be sequenced 
are first selectively amplified by PCR-based method. A 
robust method, called Anchored Multiplex PCR (AMP), 
which is similar to conventional Rapid Amplification of 
cDNA Ends (RACE) technique, has been developed to 
amplify the fusion transcripts of GOI without prior 
knowledge of the fusion partners.6 In AMP, RNA is first 
transcribed into cDNA, which is then ligated to an adaptor. 
The adaptor serves as an anchor for PCR that involves a 
universal primer annealing to the adaptor and a gene-specific 
primer targeting the GOI. The PCR product is then 
sequenced by Ion Torrent or Illumina platforms, which 
reveals all fusion partners of the GOI.  Indeed, using AMP, 
Zheng, et al., detected not only known fusion targets such as 
ALK, RET and ROS1 in FFPE tissues but also novel gene 
fusions.6 The sensitivity and specificity of targeted 
sequencing are superior to that achieved by standard FISH 
assays. The AMP technology is licensed to Enzymatics, and 
commercial kits called Archer FusionPlex Assays are 
available to detect gene fusions in lung cancer, hematological 
malignancies and sarcomas. (http://www.enzymatics.com/ 
archer/fusionplex-assays/) 
 

DEVELOPMENT OF CLINICAL RNA-SEQ TESTS: 

PRACTICE GUIDANCE    

In the light of changing FDA policies regarding laboratory 
developed tests (LDTs), special efforts should be made to 
understand the current regulatory environment. Before the 
new FDA policies regarding LDTs become officially active, 
it is recommended to follow the practice guidelines published 
by organizations such as American College of Medical 
Genetics (ACMG),88 the US Centers for Disease Control and 
Preventions (CDC),89 and the Association of Molecular 
Pathology (AMP).90 As in the case of other clinical tests, for 
RNA-Seq, a number of factors need to be taken into 
consideration, including clinical utility, test validation, 
quality control, assay sensitivity and specificity, turnaround 
time, strategies for proficiency testing, and reference 
materials. Of note, RNA is highly labile and care must be 
taken to avoid RNase contamination.  Additionally, RNA 
samples from clinical specimens such as FFPE tissues are 
often fragmented and require special chemistry for 
purification and constructing libraries. Thus, commercial kits 
are recommended for extracting RNA and making NGS 
libraries.  Also, we recommend starting with a focused RNA-
Seq panel, although in the future, when sequencing costs 
drop and bioinformatics tools are simplified, whole 
transcriptome analysis is likely to dominate in clinical labs.   

CONCLUSIONS AND FUTURE PERSPECTIVES 

RNA-Seq has proven invaluable for detecting aberrations in 
transcript abundance and/or structure in cancer, but there are 
multiple challenges and opportunities ahead.  
 
First, the current major sequencing platforms (Illumina and 
Ion Torrent) only produce short sequencing reads (up to a 
few hundreds). Such short sequences can be difficult to 
assign to the genome in the cases of gene fusion or 
alternative splicing, causing ambiguities or errors in data 
interpretation.  Longer sequencing reads (up to thousands) 
are possible using machines from certain manufacturers (e.g. 
Pacific Biosciences), but such “third generation sequencers” 

have relatively high error rates and are thus not commonly 
used in clinical settings. However, they would be extremely 
valuable once the error rates are improved.  
  

Second, RNA-Seq is typically done at the cell population 
level. However, tumor tissues are heterogeneous, with 
individual cells within the same cancer possessing divergent 
transcriptomes. Such heterogeneity may be functionally 
relevant.  In particular, cancer stem cells behave very 
differently from their progenies, and are crucial therapeutic 
targets. RNA-Seq at the single cell level is now feasible,91 

which can provide critical insights into cancer biology. 
However, to avoid sampling errors, many individual cells 
must be sequenced, and this is impractical in the clinical 
setting. Recently, a bar-code based, multiplex sequencing 
method has been developed that can interrogate thousand 
single cells at once in the same lane,92 which is expected to 
find its way into clinical labs. 
 
Finally, beside mRNA, non-coding RNA such as microRNA 
and lncRNA are also key players in cancer development and 
progression.93-95 However, they have received less attention 
in the clinical labs - particulary so for LncRNA.  LncRNA 
may therefore offer a very fertile ground for future 
discoveries.   
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